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Bayes' theorem is used to derive the dual of the Gibbs formulation of statistical 
thermodynamics. An asymptotic analysis is performed, akin to Khinchin's use 
of the central limit theorem, to determine approximate expressions for the 
moment-generating functions. The prior densities, which are determined by 
equating the maximum-likelihood estimates with the moment expressions in the 
asymptotic limit, satisfy Jetireys' invariant properties of improper prior densities. 

1. I N T R O D U C T I O N  

Most kinetic based theories of  statistical thermodynamics start with a 
reversible molecular description to which a randomness  hypothesis must 
be added in order to obtain macroscopic irreversible behavior. More recent 
theories avoid making any randomness assumption by taking an appropriate 
asymptotic limit (Bunimovich and Sinai, 1981). Asymptotic theories, at least 
implicitly, make appeal to certain theorems in probability, such as the law 
of large numbers and the central limit theorem, which deal with a large 
number  of  independent and identically distributed random variables. In 
light of  the conceptual difficulties in going from a causal to a probabilistic 
description and their inherent lack of uniqueness, it appears worthwhile to 
concentrate on the element of  randomness itself caused by the thermal 
interaction of  material bodies (Szilard, 1925; Mandelbrot,  1956, 1962, 1964; 
Lavenda, 1987a; Lavenda and Scherer, 1987a). 

For instance, when a system is placed in thermal contact w i t h  a 
thermostat,  the energy of the system ceases to be a thermodynamic function, 
since it is no longer uniquely determined in terms of the temperature and 
number  of  external parameters  needed to specify the state of  the system. 
The energy of the system is said to undergo "fluctuations." Random samples 
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of  such an extensive or observable variable, taken from a population of 
systems all having the same but unknown value of the conjugate intensive 
or nonobservable variable, can be used to estimate the latter. Energy and 
(inverse) temperature are a pair of Laplace conjugate variables. In the limit 
where the thermostat vanishes, the energy is fixed and a definite temperature 
cannot be assigned to the system (Landau and Lifshitz, 1969). Alternatively, 
in the limit of an infinitely large thermostat, the temperature can be deter- 
mined with unlimited precision, while the energy becomes completely 
indeterminate. In other words, an infinite thermostat ensures that the heat 
capacity of the entire system is infinite and the variance of the temperature 
fluctuations tends to zero. The conjugate variables thus satisfy a fundamental 
uncertainty relation in which the precision of measurement of one variable, 
as measured by the variance, increases or decreases at the expense of  the 
precision of  measurement of  the conjugate variable (Mandelbrot, 1956). At 
thermodynamic equilibrium, the thermodynamic uncertainty inequality 
reduces to an equality when the relationship between the conjugate random 
variables is perfect linear negative (Lavenda, 1987a). Treating one as a fixed 
but unknown quantity and the other as a fluctuating variable, the variance 
of the latter reaches its minimum value predicted by the Cram6r-Rao lower 
bound, which is expressed in terms of the inverse of the Fisher information. 
the idea of  " information" in this sense has an intuitive appeal, since the 
more information we have, the better the estimator or the more efficient it 
becomes. The one that has a variance equal to the inverse of the Fisher 
information is the most efficient estimator and this occurs at thermodynamic 
equilibrium (Lavenda, 1987a). The attainment of the Cram6r-Rao lower 
bound means that the conjugate random variables are linear functions of 
one another. 

The structure of statistical thermodynamics or, using Mandelbrot 's 
(1956) terminology, which he attributes to Kramers, "thermostatistics" is 
in harmony with the theory of maximum likelihood, which was first detailed 
by Fisher (1922), although it can be traced back to Lambert around 1765 
and Daniel Bernoulli, who used it 12 years later without attempting any 
justification (Barnett, 1973). The distribution of the extensive or observable 
variables depends on the intensive or estimable variables, which are related 
to the state o f  nature of the physical system. Consider the simplest case 
where the fluctuating observable is the energy e and the conjugate intensive 
quantity is fl, whose true value will be identified with the inverse absolute 
temperature. In other words, unlike the energy e, which always has a physical 
significance, the estimates of the inverse temperature, which are single- 
valued functions of e, are not thermodynamic intensive variables except for 
the true/3. Let ~ # ( e  I/3) stand for the probability density function (pdf) for 
the observation e for a given but unknown value of the parameter/3. In 
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thermostatistics, ~#(elfl)  is known as the canonical Gibbs density 

f~#(e 113) = exp[-f le  - l o g  2(/3)] f t(e)  (1) 

which belongs to an exponential family. The density f~(e), known as the 
"structure function" (Khinchin, 1949), summarizes all the thermodynamic 
information known about the system prior to observation, and the norming 
constant 

:~(/3) = f exp(-/3e) O(e) de (2) 

is the partition function. 
It is easily deduced from the Gibbs density (1) that it satisfies Neyman's 

factorization theorem ensuring that e is a "sufficient" statistic for estimating 
the unknown parameter/3. Any statistic that summarizes all the experimental 
data relevant to the estimation of the state of nature is said to be a sufficient 
statistic. Alternatively, if a sufficient statistic exists, it can always be found 
by the method of maximum likelihood. The maximum-likelihood method 
interchanges the roles of the variable and parameter such that f~#(el/3) is 
considered as a function of/3, When viewed in this manner, we will write 
l)#(e I/3)oc exp[Sf(/3 1 e)], where 5f(e I / 3 ) = - / 3 e - l o g  2(/3)is  the log-likeli- 
hood function and the proportionality sign stands for the fact that the 
structure function is extraneous in the method of maximum likelihood, 
since it drops out in the maximization of the likelihood function or, what 
is equivalent, the log-likelihood function ~(/31 e) relative to/3. It must be 
borne in mind that exp[~(/31e) ] is not a pdf, since 13 is not a random 
variable and S exp[X~ e) d/3 ~ 1. There is no sense in speaking about the 
"probability" of any given value of/3, although the likelihood of different 
values of 13 can be compared. The maximum likelihood value is determined 
from the likelihood equation OSf(/~] e)/a/3 = 0, where c~Le(/3 ] e)/O/3 denotes 
the derivative of ~ with respect to/3 evaluated at the maximum-likelihood 
value/~. Not only does the likelihood equation substantiate Gauss' (1963) 
assumption of the equivalence of the sample mean and maximum-likelihood 
value, but, in addition, it equates it with the expected value due to the fact 
that the distribution belongs to an exponential family. Usually this is true 
as the number of observations becomes indefinitely large, which can easily 
be demonstrated by using Chebychev's inequality. We should also note that 
the statistical property of sufficiency can be used to derive the canonical 
Gibbs distribution (Mandelbrot, 1956). 

It is therefore not surprising that the method of maximum likelihood 
gives all the well-known results of Gibbsian thermostatistics. As we have 
mentioned, the fact that the energy or the temperature or the temperature 
both fluctuate depends on the relative size of the thermostat in comparison 
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with the size of the system. It therefore cannot be universally valid that/3 
is a fixed, unknown parameter to be estimated in terms of observations 
made on the energy e. If for no other reason than the desire for symmetry 
in nature, energy and temperature should be mutually symmetrical. We are 
therefore led to consider/3 as a random variable equipped with a, perhaps 
unknown, prior density o9(/3). This is usually referred to as the "Bayes case" 
and the dual description can be formulated with the aid of Bayes' theorem 
or the principle of  inverse probability. In contrast to "direct probability," 
for which the random process together with the parameters are known and 
where probabilistic statements are to be made about the possible outcomes 
of an experiment, "inverse probability" attempts to infer the random process 
that has generated the data. 

Bayes' theorem, which results from the symmetry of the joint distribu- 
tion of /3 and e, can be phrased as (Jef[reys, 1973) "posterior pdfoc 
likelihood x prior pdf," or in symbols 

o9#(/3 [ e) oc exp[~(/31 e)] o,(/3) (3) 

The constant of proportionality omitted from (3) is 

~ ( e )  = f exp[~(/31 e)] o9(/3) d/3 (4) 

The posterior density w#(/3 l e) for the parameter/3 given the observation 
e, as well as the prior density w (/3) for the parameter/3, cannot be interpreted 
as a density in the frequency sense. Rather, it is to be interpreted in the 
sense of "degree of belief" that some values of/3 are more "probable" than 
others. Expressed in words, Bayes' theorem states that the probability that 
the unknown parameter has the value/3 given the datum e is proportional 
to the product of the likelihood of observing e given/3 multiplied by the 
initial probability of/3 (Savage, 1962). 

Because of the belief that certain values of the parameter/3 are more 
"frequent" than others, we are led to consider it as a random variable that 
is equpped with a prior pdf. The stumbling block in putting Bayes' theorem 
into practice has always been how to choose the prior pdfog(/3). In the 
absence of any information al~out the parameter, it is common practice to 
use the uniform prior which is formalized by the Bayes-Laplace principle 
of "insufficient reason" (Jeffreys, 1961). In fact, Boltzmann's derivation of 
the "most probable" distribution avoids the specification of prior prob- 
abilities on the basis of the postulate of equal a priori probability, stating 
that all distributions in energy among the systems are equally probable. 
Since the number of distinct ways in which one can assign energy values 
to a collective is not a probability but rather a "thermodynamic probability" 
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(Planck, 1954), which is maximized with respect to energy and number 
constraints, in what sense is the derived distribution "most probable"? A 
more rigorous derivation of the Boltzmann distribution, which avoids the 
use of Stirling's approximation, is provided by the Darwin-Fowler method 
of mean values, which is an asymptotic method using saddle point integra- 
tion (see, for instance, Huang, 1963). As the number of' systems comprising 
the esemble tends to infinity, the most probable distribution of  energy among 
the systems tends to the expected value and the saddle point is formed by 
an infinitely sharp peak and an infinitely steep valley. ] 'he thermodynamic 
probability is modified so that it is converted into a multinomial distribution, 
but the prior probabilities are merely introduced for mathematical con- 
venience and have nothing to do with the a priori probability of finding a 
system in a given state. At the end of the calculation, the priors are all set 
equal to one. The parameter /3 is estimated from the equivalence of the 
expected and observed values of the energy that is obtained from the 
equation bears a striking similarity to the likelihood equation. 

The Bayes-Laplace rule of setting to (fl) d/3 oc dr  or the uniform assess- 
ment of a variable was criticized by Jeffreys (1961) in the case where it has 
a finite range of possible values. Jeffreys offered, as an example, the law 
connecting the mass and volume of a substance. If the uniform rule is 
adopted for one of the variables, he concluded that it will be incorrect for 
the other variable, since the mass and specific volume are reciprocals of 
one another. In order to make up for such inconsistencies in the Bayes- 
Laplace rule, Jeitreys (1961) and others made extensive use of improper 
priors to represent "knowing little, based upon certain invariance properties 
that the priors should have. He suggested that if the parameter may have 
any value from 0 to co, the prior probability of its logarithm should be taken 
as uniformly distributed. That is, if we set O = log/3, then the prior density 
for O is to(O)dOecdO ( - c o <  O<oc) .  Since dO=d~3,~~3, this implies that 
~o(/3) d/3ocd/3//3 (0</3 <co) is an improper pdf. Observing that the rep- 
resentation of  certainty by unity is only one of convention, Jeffreys was led 
to consider I d/3//3 = oo as a statement of certainty when improper prior 

a 

pdf 's  are used. The fact that both ~0 dr~~3 =co and I~ d/3//3 =co imply that 
Pr{0 </3 < a}/Pr{a </3 < co} is indeterminate simply means that nothing 
can be said about the ratio of the two probabilities. Indeterminacy is taken 
as a formal representation of ignorance. Moreover, the choice of the 
improper prior pdf  as to (/3) ec 1//3 is also seen to be invariant to transforma- 
tions of the form O = fin, since d/3//3 and dfl"//3 ~ are always proportional. 
This would not be true if the uniform distribution were used. Jeffreys cited 
the measurement of the charge of an electron, where some methods give e 
while others e 2, and certainly de and de 2 are not proportional. As a 
generalization of the invariance of the prior under transformations of the 
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form O= J-(/3), with 3-- a differentiable transformation, Jeffreys showed 
that the prior should be taken to be proportional to [5~(O)] 1/2, where 
~(0) =-OzSf/Ot92 is the Fisher information and the overbar denotes the 
expectation value. Denoting [~1 as the Jacobian of the transformation, 
namely [J[ dfl=dO, then the fact that lJl=[5~(/3)/5(0)] '/2 implies 
oJ(/3) d/3 = ~o(O) dO or that the probability should be independent of the 
parametrization. 

In this paper we develop the dual, or the Bayes representation, of the 
Gibbs formulation by interchanging the role of the thermodynamic conju- 
gate variables and we show that Jeffrey's invariance properties for choosing 
prior pdf's are satisfied in statistical mechanics. This will be accomplished 
"inverting" Bayes' theorem (3) in the asymptotic, large-sample limit, where 
Laplace's method is applicable. Laplace's method (Sirovich, 1971) can be 
considered as the real variable analog to the saddle point method that was 
employed by Darwin and Fowler. We will arrive at the conclusion that 
since the Gibbs canonical formalism coincides with the method of maximum 
likelihood, it is the more obvious of the two representations. Furthermore, 
we shall show that the Gibbs formulation is more amenable to the study 
of the thermal iteraction of material bodies through the exchange of additive 
invariants, since e rather than fl is considered as the random variable. 
However, the maximum-likelihood method (Fisher, 1922) was initially set 
up against the older Bayes method. And it is Bayes' method that leads to 
the dual representation, which has a closer correspondence to the funda- 
mental equations of macroscopic thermodynamics than the canonical Gibbs 
formalism. 

The asymptotic analysis is justifiable on the basis that the solution 
should not depend heavily on the specific type of distribution, sample size, 
etc., and that what we are really interested in is the thermodynamic limit 
where most probable and mean values coincide. It has often been stated 
that "the epistemological value of probability theory is revealed only by 
limit theorems" (Gnedenko and Kolmogorov, 1954) and we will show that 
thermostatistics is no exception. 

2. ASYMPTOTIC EVALUATION OF BAYES' THEOREM 

The asymptotic results of thermostatistics, like large-sample theory in 
statistics (Chernoff, 1956), can be shown to be based on certain theorems 
in the theory of probability which make it relatively easy to obtain good 
approximate results in the limit as the number of systems comprising the 
ensemble increases without limit or if the sample size is large (Lavenda and 
Scherer, 1987b). These theorems, like the law of large numbers and the 
central limit theorem, are extremely elegant and their elgance has surely 
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been captured by the asymptotic results of thermostatistics. In fact, the 
"sample size" may be interpreted as the number of subdivisions of 
the original system or the number of systems in thermal contact with it. 
The thermodynamic additivity property of the energy is translated into the 
statement that the extensive observables e~, ~2, - - . ,  e~ are independent and 
identically distributed random variables which for sufficiently large n come 
under the jurisdiction of the law of large numbers and the central limit 
theorem. Furthermore,  if the process is reversible, then the entropy is 
additive. The additivity of the energy places a lower limit on the number 
of possible subdivisions. The fact that the true value of/3 is a "macroscopic" 
intensive variabte means that no better estimate for it can be obtained by 
making finer and finer subdivisions (Mandelbrot 1956; Lavenda, 1987b). 
This is none other than Fisher's (1922) criterion that e be a sufficient statistic 
for the estimation of/3. In other words, the grouping of observations, into, 
say, the sample mean g = ( l / n )  ~ ei, does not cause a loss of" informat ion"  
(Kullback, 1959). 

Because the ei are independent and identically distributed random 
variables, the likelihood function will factor into a product of n factors for 
a random sample of size n. This means that the log-likelihood will increase 
as n and it will ultimately dwarf the comparative term log o)(/3) in equation 
(4), which is independent of the sample size or the number of subdivisions. 
As n ~ co, the method of  Laplace can be used to obtain an asymptotic 
expression for the integral in (4). Laplace (Sirovich, 1971) argued that the 
main contribution to the integral comes from the neighborhood of the global 
maximum of the log-likelihood function at/3. Expanding ~(/3 [e) in a Taylor 
series about/3, we find 

0 ~e(/31 g) 
Y ( / ) - e x p [ ~ ( B I e ) ]  w(/3) ~_o~ exPL2 off 2 (f l_/~)z d ( /3 - /3 )  

=exp[~_7(/31e)] o)(/3) 2~r a/32 (5) 

where the maximum-likelihood estimate /3 is a solution of the likelihood 
equation 

e-~ 0 (6) a~ a/3 

andO2~(/31 e)/O/3 2 denotes the second derivative with respect to/3 evaluated 
at/3. The reason for neglecting higher powers in the Taylor series expansion 
can be seen in the following way. Since 0-22(/3) =- -02~q(/3 ] ~ )/0/32 is of order 
n, the term exp[-( /3 -/3)2/2o-2] will be appreciably different from zero for 
(/3 - /3 )  - O(1/x/-n). In that case, the remainder term is of O(1/~-n) and is 
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negligible compared with the second-order term, which is independent of 
�9 �9 2 A 

n in the limit as n -> oo. And the fact that the samphng variance tr, (/3) - O(n), 
which approaches 0 as n-->oo, has allowed us to replace the limits of 
integration of 0 to oo in equation (5) by - ~  to +oo. 

Developing the log-likelihood function in equation (3) in a Taylor 
series under the same conditions and dividing by the asymptotic form of 

given by (5), we obtain 

t~ ~ 2~" 0/32 j e.xp 2 0/32 

which is the normal approximation for the posterior density that is valid 
for sufficiently large n. In the asymptotic limit, the mean value 

= f flto#(/3Je) d/3- Olog Y(e) (8) 
3 0e 

will coincide with the maximum-likelihood estimate /3 =/3(g), where g is 
the expected value of the energy that is obtained by inverting the likelihood 
equation (6). In other words, the mean value (8) approaches the most likely 
value, obtained from the implicit relation (6), or equivalently 

/3 = -0  log Y(g)/Oe (9) 

in the limit as n ~ oo. In the next section, we will show that/3 is the inverse 
of the absolute temperature T for temperatures measured in energy units, 
and therefore - log  Y(g) corresponds to the entropy [cf. equation (23)]. 
The negative of the entropy coincides with the logarithm of the maximum- 
likelihood function (Lavenda and Scherer, 1987a), so that 

~( /31  e)  = - / ~ g  - log  ~ (/~) = log ~(g)  (10) 

It is to be appreciated that this relation is valid only at the maximum- 
likelihood estimate and, in general, there will not be any relation connecting 
the moment-generating functions 2(f l )  and ~ (e )  in the Gibbs and Bayes 
formulations, respectively�9 Therefore, in view of the asymptotic relation (5), 
we conclude that 

(.O ( / ~ )  OC [ , ~  ( ~ ) ] 1 / 2  (11) 

where 5~(/~) is the Fisher (1922) information, since the expectation make 
no difference in random samples of fixed size that are taken from an 
exponential family (Lindley, 1970). Expression (11) is Jeffreys' choice of 
the prior pdf. 

We can invert Bayes' theorem to obtain an asymptotic expression for 
the Gibbs density, which, when equated to an analogous asymptotic 
expansion of (1), will give Khinchin's (1949) important formula for the 



Bayesian Approach to Thermoslatislics 459 

structure function [cf. equation (18)]. If/3 is to be a sufficient statistic to 
estimate e, then the posterior pdf ooe(/3 1 e) belongs to an exponential family 
as e ranges over its values. From the Neyman factorization theorem for a 
sufficient statistic, we know that it must have the form 

oJ~(3 l ~) = exp[M(g f/3)] f~(/3) (12) 

where the log-likelihood function M(e]/3)=-/3e-log ~(~)  and the func- 
tion ~(/3) will be subsequently identified. Thus, Bayes' theorem can be 
expressed as 

l )~(e/~)  ~ exp[M( ~ J3)] w(e) (13a) 

with the norming constant 

Y(/3) = f exp[M(e [/3)] ~o(e) de (13b) 

Developing ~he log-likelihood function M(e t/3) in a Taylor series expansion 
about g, which is the solution to the likelihood equation 

f i_  Olog~(g)  (14) 
Oe 

and using 

3~(~)-  2~r[ 02 log M(g)]  1/2 
de 5- j exp [ - f ig - log  A~(g)] o~(g) 

which is obtained by evaluating the integral (13b) by Laplace's method, we 
obtain 

I 1  821ogM(g)] b~2 [- I 0210gJ;~(i)(is_g)2 ] (15a) 
a~'(e[/3)~ ~ o-~ J expL 2 0e 2 -  

for the asymptotic expression of the Gibbs density. 
An analogous asymptotic expression can be obtained from expression 

(1) by.expanding the log-likelihood function 2_7(/31e) = - B e - l o g  ~(/3) 
about/3, which is the solution of the likelihood equation (6). We then obtain 

1 0 2 1 o g ~ ( f i )  
~#(e  ]/3)-  exp [ - f i g - l og  ~(fi)] ~(g) exp 2 0/32 

Developing e in a Taylor series about ~, we obtain 

(/3_fi)2] 
(15b) 

02 log ~(~)  
e - g -  - 0/32 (/3 - fi) (16) 
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to lowest order (Khinchin, 1949) in the difference ( / 3 - / 3 ) -  O(1/,,/n). The 
asymptotic relationship (16) between e and /3 is perfect linear negative, 
implying that the correlation coefficient assumes its extreme value of -1.  
Now, using the maximum-likelihood estimate g = e(/~), we obtain the fol- 
lowing relations between the partial derivatives of the Jog-likelihood 
function: 

7~-=a/3 a~' 0e 2-a/3: \ae/  -~\de:l 
Because 0~/0/3 = 0 and/~, the second equation gives 5~(g) = Y(g)(dpdg):. 
Noting that the Jacobian of the one-to-one differentiable transformation 
g = e(/3) is 

I~1 = Idg/dBI = ~(~) 

we obtain 

5~(g) = 1/5~(/~) (17) 

This is the Cram6r-Rao lower bound for the variance, which is valid only 
at statistical equilibrium; for nonequilium states, the equality must be 
replaced by an inequality (Lavenda, 1987a). Alternatively, we could have 
derived (17) from the relation 

[ ~ ( ~ ) ] 1 / 2  = ]~[[Sg(g)]l/2 

by noting that ]Jl =-r 
On the strength of equations (16) and (17), which can be more explicitly 

stateed as 

S(g) = o'-2(g) 02 log J//(g) IO 2 log ~(/~)]-1 
- 0e 2 - L 7 ~  J = ~ - 1 ( ~ ) =  ~2(t~) 

we obtain 

~(~) exp(~g)  
~ ( g ) =  [2~.~(/~)],/2 (18) 

by equating the two asymptotic expressions for the Oibos density, (15a) 
and (15b). Expression (18) was first derived by Khinchin [1949, equation 
(42)] by invoking the central limit theorem for the Gibbs density, inverting 
(1), and evaluating the resulting expression at the maximum-likelihood 
values/3 =/3 and e = g. 

Due to the invariance of joint pdf under the exchange of/3 and e, we 
have 

w#(/3le)w(e) = ~#(e l/3)w(/3) (19) 
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whi'ch is another way of writing Bayes' theorem. If the posterior densities 
in (19) are the normal densities (7) and (15a), which are related by 

w#(/~ I e) = [~]O,*(e ]/3) (20) 

then 1~1--,o(~)/o)(~)- Furthermore, since the prior pdfw(/~) is given by 
(11) and Cram6r-Rao lower bound (17) applies, we get 

~o(g) oc [@(g)]1/2 (21) 

which is again Jeffreys' improper prior pdf for a random quantity that can 
only take on positive values. 

3. THERMODYNAMIC RELATIONS IN THE 
B A Y E S  REPRESENTATION 

We have already mentioned that maximum-likelihood values of the 
moment-generating functions coincide with thermodynamic functions. The 
relationship between the thermodynamic functions gives rise to equation 
(10), which connects the moment-generating functions at their maximum- 
likelihood values. In statistical mechanics, the identification is made by 
comparing the canonical expression for the entropy, in terms of mean values, 
to the Gibbs equation. On the strength of the central limit theorem for a 
large number of independent and identically distributed random quantities, 
the asymptotic form of the distribution tends to a normal one for which 
the means and modes coincide. We now consider the relation between the 
maximum-likelihood values of the moment-generating functions and their 
relation to thermodynamic quantities in greater detail. 

We multiply equation (9) through by dg to get 

dg = - d  log ~(g) (22) 

provided there is no work done by the external forces on the system, for 
otherwise the moment-generating function ~(e)  would also be a function 
of the generalized coordinates. Since there is no difficulty in introducing 
such dependencies, we will treat the case in which no work is done. 
According to the first law of thermodynamics, the change in the energy is 
given by dg = 8Q, where 8Q is the "amount of heat" received by the system 
during the elementary transition. It is clear that we have had to use (9) 
instead of (8), since e is a random quantity, to which the first law can 
obviously not be applied (Khinchin, i949; Lavenda and Scherer, 1987b). 
It is, however, applicable to its mean value g. Hence, the quantity/3 6Q is 
the total differential of a certain thermodynamic function 

/3 ~Q = - d  log 3f(g) 
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which shows that the function ~ is the integrating factor for the quantity 
6Q and whose existence is postulated by the second law. This thermody- 
namic function is the entropy S and in energy units we have 

- d  log •(g) = dS(g) (23) 

The derivation of the thermodynamic relation (23) in the Bayes rep- 
resentation is more natural than the canonical Gibbs formalism, since the 
entropy as a function of the internal energy corresponds to a fundamental 
equation of thermodynamics, in contrast to the more synthetic functional 
dependence upon/3 which results from the canonical formalism (Tisza and 
Quay, 1963). Furthermore, subtracting the total differential d(~g) for both 
sides of (23) leaves it a total differential, viz., 

d[#g + log ~(g)]  = gd# = d[/~ff(/~)] (24) 

where the Helmholtz free energy ~(/~) is related to the logarithm of the 
partition function by 

/3~(/3) =/~g - S(g) = - log ~(/~) (25) 

This establishes the validity of equation (10). 
The symmetrical structure between the Gibbs canonical representation, 

in terms of the Gibbs pdf ~#(e]/3), and the Bayes' representation, in terms 
of the posterior pdfw#(fl  [e), leads to a number of conjugate thermody- 
namic relations. In the Bayes representation, the requirement that the 
likelihood equations (9) and (14) be identical implies ~ (e) = ~(e) .  Alterna- 
tively, in the Gibbs representation, the equivalence of the likelihood 
equations (6) and 

O log ~(/~) 
e + = 0 (26) 

0/3 

leads to the conclusion that Y(/3)= ~(fl). 
Therefore, the expressions for the moment-generating functions (2) 

and (13b) must be one and the same, implying that 

f~(e) = w(e)/Y(e)  (27a) 

and, in particular, 

~( g) = w( g)e s(~) (27b) 

which is Khinchin's expression (18) for the structure function. Likewise, 
expressing the moment-generating function (4) as the Laplace transform of 
some "structure function" f/(fl), 

:Z(e) = f e-~fl(/3) d/3 (28) 
3 
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and requiring it be identical to (4) yields 

f~(/3 ) = w(/3 )/ ~(/3 ) (29a) 

and, in particular, 

D(/3) = w (~) exp[/3~-(/3)] (298) 

Formula (29b) can be derived in an analogous manner to Khinchin's 
expression (18) for the structure function. Introducing the normal approxi- 
mation (7) for the posterior density to#(/3 l e) into (12) and rearranging gives 

[ 1 0 2 1 o g ~ ( ~ ) l  1/2 r 1 02 log ~(/~) (]3_/~)21 
n(/3)= j expL- a/32 

x exp[/3e +log :~(~)] 

We choose for t he"pa rame te r "  e the simple root of equation (9). In 
particular, for/3 =/3, we obtain the important formula 

[1 
1)(/3) = ~ 5~(/~) ~ (g )  exp(/~g) (30) 

which is the Bayesian analog of Khinchin's expression (1.8) for the structure 
function. On the strength of equation (10) relating the two generating 
functions at their maximum likelihood values, the two structure functions 
(18) and (30) are related by 

f~(/)f~(/~) oc exp(/3g) (31) 

If expression (19) were to be evaluated at the maximum-likelihood 
# ^ 

values where (27b) and (29b) hold, then we would obtain w(g) =f~ (g~/3), 
using the pair of  relations (12) and (298), while we would get ~o(/3)= 
w#(/31g) where (1) and (27b) to be used. It would therefore appear that 
the choice of improper prior densities would be reflected in improper 
posterior densities. However, these relations hold for the maximum-likeli- 
hood values of the parameters, which are related by a thermal equation of 
state. These particular values modify the functional form of the distribution 
and one can no longer speak about Laplace conjugate variables or to 
distinguish between improper and proper densities, because the pdf~ will 
no longer be normalizable. It suffices to cite an ideal gas, where the product 
/3g = const and the posterior density Ft~(g]/3)oc 1/g [cf. equations (53) ff.]. 
Jeffreys (1961, p. 195) contended that when n is sufficiently large, the 
likelihood function is nearly proportional to (7) and it is immaterial whether 
the prior density w(/3) is evaluated at the actual value /3 or at /3 =/~. 
Furthermore, the relation between the generating functions and thermody- 
namic potentials can only be made at the maximum-likelihood values of 
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the parameters, so a similar situation is encountered as in the Boltzmann 
relation of entropy to the nonnormalizable "thermodynamic probability" 
(Fowler, 1936). 

Consider now a composite system formed from two subsystems, which 
we will label by the subscripts I and 2. The variables related to the composite 
system will not have any subscript. For the composite system we have 
e l + e 2 = g  and 

(/3) ~ ~1 (/3)~2(/3 ) (32) 

This relation is derived from the fact that the generating function ~(/3) is 
the Laplace transform (2) of the structure function f~(e), which obeys the 
fundamental law of composition (Khinchin, 1949) 

~(g) = f ~l(e~)AE(g- e,) de, (33) 

The integral can be taken between infinite limits, since there is no divergence 
difficulty; the integrand is different from zero only for 0 < e' < e. The entropy 
of the composite system is 

S( g) = fig+log ~(f i )  
A A A A 

= fig, + log ~1(/3 ) +/392 + log ~2(/3 ) (34) 

Additivity only applies if both systems are at the same temperature. A A A A 
However, if the functions/3g, + log ~, (/3) and  ~g2 + log ~2 (13) have minima 
at d = fi' and fi = fi2, respectively, with/3, ~/32, then it follows that 

S(g) >- S,(g,) + $2(g2) (35a) 

or  

Y ( g )  ~ Yl (gl)Y2(g2) (35b) 

which follows from the identity (23). 
Inequality (35a) implies that the entropy of the composite system cannot 

be less than the entropies of the subsystems. From the definition of the 
Helmholtz free energy (25) and inequality (35a) it follows that 

fi (fi ) = f i g -  s( g) 

<_ fig, - s (  g,) + f i g , -  s (  

---- fi{,-~O'l(fi ) + ,.O~2(fi)} (36) 

The free energy of the composite system cannot be greater than the free 
energies of the subsystems. The equality sign applies to the case where both 
subsystems are at the same temperature [cf. inequality (51)]. 
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We now consider system 1 as the small system and system 2 as the 
reservior such that el << e. The probability 

Pr(a<e~<b)=~(g) f  D~(el)~2(g-e~)de, (37) 
a<el<b 

for the random quantity el to lie between any two values a and b, with 
a < b, implies that [Khinchin, 1949, formula (27)] 

pl(e,) - (38) 

is the pdf  for the random variable e~. The classical derivation of the 
canonical form of the pdf  for p~(el) (Blanc-Lapierre and Tortrat, 1956) 
involves a Taylor series expansion of ~ 2 ( g -  e~) about g, and using the fact 
that 61 << ~ results in 

1 
p,(el)-~-l-l~a~(el) exp(-/3~l) (39) 

The derivation has also employed the approximate relation 

a2(g) w2(g) ~2(/3) 1 
D(g) - w(g) exp[S2(g)-S(g)] 2~(/3) -~1(/3) (40) 

and (Gibbs, 1902) 

0 log YZ2(g) _ r~ 
(41) 

0e 

The approximate relation (40) implies that O)2(g ) ~ 0)(?~), while, in view of 
(9) and (27b), equation (41) implies that the prior density w2(g) is essentially 
a constant, which is not true in general. 

Rather, consider the prior density of subsystem 1, which, according to 
(27a), can be written as 

w,(el) = exp[log Yl(~.I)] ~1(~.1) 

Developing log Yl(el) in a Taylor series expansion about gl gives 

log Yl(e,) = log ~i(gl)  4 
0 log ~1(gl) 

0e 

(42) 

Notice that the first-order term is a quantity of the order of magnitude of 
O~/n, which dominates over the remainder as n-~ oo, we get log :~1(el)= 
- f l e l - l o g ~ l ( / 3 )  when (9) and (10) are introduced in (43). Hence, 

(~,-g~)+o(1) (43) 
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expression (42) can be written in the canonical form 
A 

tol(E1 ) ~--- ~..~l(El) exp( - - f ie l )  (44) 
21(/3) 

which allows us to identify the prior to~(ei) with the pdf  pl(ei) given by 
the canonical form (39). 

Symmetry considerations between the Gibbs and Bayes representations 
lead us to consider (29a) written in the form 

to1(/3) = exp[log ~l(fl)] ~~1(/3) (45) 

as the pdf  for the random quantity /3. Expanding A log ~1(/3) in a Taylor 
series about the most likely value of the intensity/3 yields 

A 

log~(fl)=lOg~l(fl)q -Ol~ (/3 - /3)  + O(1) (46) 
o/3 

Since (fi - / J )  is a quantity whose order of magnitude is the order of 1/Vn, 
the first-order term, which is Ox/-n, dwarfs the remainder as n ~ co. With 
the aid of the likelihood equation (6), or equivalently (26), and equation 
(10), expression (46) reduces to log ~1(/3 ) = - / 3 E l  -- log ~ 1  ( E1 ),  and introduc- 
ing this into (45) gives 

Wl(/3 ) = 121(/3) exp(-/3g~) (47) 
~1(gl) 

as the canonical pdf  for the random intensity /3. Expression (41) is the 
Bayesian analog of the Gibbsian relation (44) and has an equally important 
role. In fact, the pdfpl(/3) for the random quantity/3 can be written in the 
form 

121 (/3)122(/3 ) exp(-f ig,)  
Pl(/3) - ~-~, (/3) (48) 

0(/3) ~l(~,) 

analogous to expression (38) for the pdfp~(el), by noticing that w2(fl) 
w(fl) (Khinchin, 1949, p. 91) as n ~ c o  and approximating the partition 
function by (44). The condition to2(/3)~ to (fl) implies that the heat capacity 
of subsystem 2 is approximately equal to the total heat capacity of the 
composite system. 

In the Gibbs formulation, the energy of the subsystem is a random 
variable whose distribution depends upon a fixed but unknown constant 
representing the state of nature, while in the Bayes representation the energy 
of the subsystem is fixed and the conjugate intensitive quantity is the random 
variable that at equilibrium has the same value in each of the subsystems. 
Therefore, the method of composite systems, based on the exchange of 
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additive invariants (Carath6odory, 1909; Landsberg, 1956), is more readily 
adaptable to the Gibbs formulation than to the Bayes one and this may in 
part explain why historically the former has preceded the latter. 

Let us now reverse the process and consider a composite system initially 
characterized by an intensity /3. We do work on the system by using a 
thermal engine to create a temperature difference such that T2 > T1. Subsys- 
tems 1 and 2 are brought into a state characterized by the intensities 
/3~ = / 3 -  1/2A/3 and /32 =/3 + 1~2Aft, respectively, where A/3 =/32-/31 < 0. 
Thermodynamic additivity no longer holds and, in particular, we must 
replace (33) by 

. A exp(/31e, +/32e2) 

< exp[el(/3 7 1/2A/3)+ e2(/3 + 1/2A/3)] 

= ~(/3) exp(l/2AeA/3) --< ~(/3) (49) 

where aXe = e2-  e,. The first inequality in (49) is a consequence of (36b), 
while the second inequality follows from the fact that Carnot's principle is 
satisfied. 

Since /3~ >/32, there will be a heat transfer from subsystem 2 + 1. In 
the presence of  a heat flow without any work being done, we have e2-  e~ = 
aQ > 0. The total entropy change will therefore be given by 

dStot= (--~l ---~2)t$~ = -aXe A/3 >-- O (50) 

which, when multiplied by the lower temperature 7"1 is commonly referred 
to as the disipation. 

If/3~ and/32 are the values for which the functions St and $2 reach a 
minimum, while S has a minimum at/3, then inequality (49) can be expressed 
as 

which is actually what is implied by inequality (37). Although equation 
(34) is a macroscopic thermodynamic relation, S =  S(~), the canonical 
entropy S =  S(/3) has been implicitly used in going from equality (34) to 
inequality (35a). But implicit in inequality (35a) is the difference in tem- 
peratures of the two subsystems, which is not reflected in the inequality 
(36). Notwithstanding the fact that the thermodynamic entropy S(g) and 
the canonical entropy b~ are related to one another by the likelihood 
equation/3 =/3(g), there is not a complete harmony between the two when 
it comes to extremum principles. This is one important advantage of the 
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Bayes representation, in which the fundamental thermodynamic dependen- 
ces are preserved. 

4. ON THE ASYMPTOTIC EQUIVALENCE OF THE 
MAXIMUM-LIKELIHOOD AND MOMENTS METHODS 

Asymptotic approaches, such as the Darwin-Fowler method for deriv- 
ing the canonical Gibbs density, rely on the fact that the most probable 
value and average values coincide as n--> ~.  The asymptotic equivalence 
between the maximum-likelihood estimate of the parameter fl that is 
obtained from the likelihood equation (6) and its average value given by 
(8) will allow us to obtain an explicit expression for the prior to(/3). This 
will show that some of the most common distributions of statistical 
mechanics sustain Jeffreys' choice of the prior pdf given by (11). Alterna- 
tively, by assuming that Jeffreys' choice of the prior is valid, we will obtain 
an asymptotic equivalence between the maximum-likelihood estimate and 
the average value. 

As a first example, consider an ideal monatomic gas whose partition 
function per particle is log~(/3)cc-31ogfl .  The maximum-likelihood 
estimator found from the likelihood equation (6) is ~ = 3/2g. The logarithm 
of the asymptotic expression (2.1) can be written as 

log :~(g)~ -S( /~)+log to~p~-~mg ~-~ (52) 

where we have made the identification ~( /~[g)=-S( /~)  =3 log/~+const. 
Differentiating (52) a single time gives 

Olog~f(g) 3 d 
Og 2~ 2 l~ ~(fl)  +---~/ (53) 

5 ]  

-ft. which, according to (9), is equal to We thus obtain the prior pdf as 

to (fl) oc 1//~ oc [.~ (/~)]1/2 

which is none other than Jeffreys' (1961) improper pdf (11) for/~ based on 
the invariance property that the prior be invariant with respect to powers 
of ft. Alternatively, if we had chosen the prior pdf according to (l 1), then 
we would have obtained the asymptotic equivalence of the most probable 
and average values of the parameter. 

A 

Moreover, since (17) applies at thermodynamic equilibrium, to(fl)oc 
1/oJ (g), so that w(g)oc 1/g. Then relation (27b) between the prior density 
and the structure function gives F~(g)cc (g)1/2, which is the correct form of 
the structure function for a system with three degrees of freedom (Perrin, 
1939). Likewise, from (29b) we find that [l(fl)oc (~)1/2. 
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Furthermore, the variance has the value predicted by the Cram6r-Rao 
lower bound. Differentiating (53) gives 

a=log~(~)_ S _[o~ log~(~) ]  -' 
ae 2 2g 2 L 0/3 = J 

2 "~ or cr (/3) = tr-=(g). 
As a second example, we consider the harmonic oscillator with 

frequency v. The partition function is ~(/3)= 1/sinh(�89 , where h is 
Planck's constant. The likelihood equation gives 

/3 = 2 c o t h - ' ( 2  g) (54) 

as the maximum-likelihood estimate of the parameter/3. The asymptotic 
form of the moment-generating function ((5) is 

r ==a": r 12 ,) coth-'(~,)] 
• ( g ) -  L.,~ (/3) j exp[-th'~v 

[ x sinh coth -~ g w(/3) (55) 

where 

1 2 

is the Fisher information. Using the criterion pdfw(/3) in (55) must be 
chosen such that 

og - hv c~ g + l - [ ( 2 7 h v ) g ]  5 -~v 

(56) 

is equal to the negative of the maximum-likelihood estimate (54). This gives 
again expression (11) for the prior pdf. And differentiating (56) gives 

ag z - U sinh: /3 =L a/32 J 

showing that the distribution has the minimum variance predicated by the 
Cram6r-Rao lower bound. This is true of all equilibrium distributions where 
the conjugate variables are perfectly negatively correlated. 

In the high-temperature limit we have 

-(5)-1 [•(/3)]'/2 = csc coth-' g ~ coth-' g 
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giving back the ideal gas result, for which Jeffreys' second rule and its 
generalization coincide. Therefore, in the high-temperature limit or, in 
general, for a monatomic ideal gas we have that g/3 is constant and 

A 

Since g is capable of taking any value from 0 to co, we take its prior density 
to(g) dgoc dg/g. And, since the same is true of fl, we have two consistent 
statements of the same form, which would not have been true had we chosen 
the Bayes-Laplace rule to(g) dgac d~. And for any other power n, dg/g and 
dg"/g" are always proportional. This invariance property^ is characteristic 
of Maxwell-Boltzmann statistics, for which ~(g)ac 1/~(/3). 

As we have seen, the invariance property also holds for Bose particles 
in the high-temperature limit. However, the same is not true for Fermi 
particles. Consider a Fermi oscillator with two levels: 0 and So. The partition 
function is 

which gives 

~(/3) = 1 + e-~'o 

~((/3 ] e)) = -Be  - log(1 + e -~~ 

as the expression for the log-likelihood function. The likelihood equation 
(6) gives the maximum-likelihood estimator as 

llog( - 0 
The Fisher information is given by 

,.,r (/~) _ 02~( /~  [ g)  _ g2 exp(fieo) 
0/3 2 

where we recall that the use of the expectation makes no difference in 
random samples of any fixed size taken from an exponential family. The 
logarithm of the asymptotic expression for the moment-generating function 
~ (e )  is 

log ~ ( g ) ~ - ~ o  l o g ( ~ - 1  ) - l o g ( e o ~ g  ) +log to(/~) - ~  log or 

Setting the first moment equal to the negative of the maximum-likelihood 
estimate, (57), we obtain the prior pdf as 

,o(/3) oc [~( /3)] , /2  = 2 cosh(�89 
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In the high-temperature limit, we find that to(/~)cc [~(/~)]1/2= const and 
there is no invariance property for the prior pdf  of the Fermi oscillator. 
This, however, is precisely the Bayes-Laplace rule, which Jeffreys (1961) 
considers as an unacceptable representation of  the ignorance concerning 
the value of  the parameter. 

We have shown that the prior pdf 's  of the temperature for some of  the 
most common statistical ensembles are improper "uniformative" pdf's.  From 
the data acquired through observations on the energy, we are able to make 
a better "guess" of  the conjugate, intensive variable which is described by 
a proper pdf. The initial state of ignorance is to be attributed to the isolated 
nature of the system and, in order to define a temperature at all, we must 
suppose it to have been in thermal contact with a thermostat at some very 
distant time in the past (Mandelbrot, 1962). However, we are in no way 
restricted to isolated systems and uniformative priors. For open systems, 
maintained in nonequilibrium states by external constraints, we expect to 
have informative priors. 

In a state of  equilibrium, the conjugate thermodynamic variables are 
perfectly linear and negatively correlated. According to regression theory, 
if we want to predict the value of the random variable fl from values of 
the random variable e, we conclude that at equilibrium the error of linear 
prediction is zero. This means that the correlation coefficient will be greater 
than its equilibrium value, -1 ,  for nonequilibrium states and consequently 
the conjugate thermodynamic variables will only fluctuate about their equili- 
brium equations of state. If  the unobserved random "error"  or "disturbance" 
is due to thermal fluctuations that are modeled as Brownian motion, we 
can conclude that such forms of disturbances have no effect at equilibrium. 
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